Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling.

نویسندگان

  • Jae-Heung Ko
  • Kyung-Hwan Han
  • Sunchung Park
  • Jaemo Yang
چکیده

Wood is an important raw material and environmentally cost-effective renewable source of energy. However, the molecular biology of wood formation (i.e. secondary growth) is surprisingly understudied. A novel experimental system was employed to study the molecular regulation of secondary xylem formation in Arabidopsis. First, we demonstrate that the weight carried by the stem is a primary signal for the induction of cambium differentiation and the plant hormone, auxin, is a downstream carrier of the signal for this process. We used Arabidopsis whole-transcriptome (23 K) GeneChip analysis to examine gene expression profile changes in the inflorescent stems treated for wood formation by cultural manipulation or artificial weight application. Many of the genes up-regulated in wood-forming stems had auxin responsive cis-acting elements in their promoter region, indicating auxin-mediated regulation of secondary growth. We identified 700 genes that were differentially expressed during the transition from primary growth to secondary growth. More than 40% of the genes that were up-regulated (>5x) were associated with signal transduction and transcriptional regulation. Biological significance of these regulatory genes is discussed in light of the induction and development of secondary xylem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plant Body Weight-Induced Secondary Growth in Arabidopsis and Its Transcription Phenotype Revealed by Whole-Transcriptome Profiling1[w]

Wood is an important raw material and environmentally cost-effective renewable source of energy. However, the molecular biology of wood formation (i.e. secondary growth) is surprisingly understudied. A novel experimental system was employed to study the molecular regulation of secondary xylem formation in Arabidopsis. First, we demonstrate that the weight carried by the stem is a primary signal...

متن کامل

Microarray analysis of gene expression patterns in Arabidopsis seedlings under trehalose, sucrose and sorbitol treatment

Trehalose is the non-reducing alpha-alpha-1, 1-linked glucose disaccharide. The biosynthesisprecursor of trehalose, trehalose-6-phosphate (T6P), is essential for plant development, growth,carbon utilization and alters photosynthetic capacity but its mode of action is not understood. In thecurrent research, 6 days old seedlings of Arabidopsis thaliana (Columbia ecotype) were grown inliquid cultu...

متن کامل

Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 regulates xylem development and growth by a conserved mechanism that modulates hormone signaling.

Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Ara...

متن کامل

Primary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis

There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...

متن کامل

miR156/SPL10 Modulates Lateral Root Development, Branching and Leaf Morphology in Arabidopsis by Silencing AGAMOUS-LIKE 79

The developmental functions of miR156-SPL regulatory network have been extensively studied in Arabidopsis, but the downstream genes regulated by each SPL have not been well characterized. In this study, Next Generation Sequencing-based transcriptome analysis was performed on roots of wild type (WT) and miR156 overexpression (miR156OE) plants. One of the SPL genes, SPL10, which represses lateral...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 135 2  شماره 

صفحات  -

تاریخ انتشار 2004